Search results
Results From The WOW.Com Content Network
The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1] It is also equivalent to 10 barye (10 Ba) in the CGS system. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar , and the kilopascal (1 kPa = 1000 Pa), which is equal to ...
Pressure increase per meter of a water column [26] 10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed] +13 kPa +1.9 psi High air pressure for human lung, measured for trumpet player making staccato high notes [48] < +16 kPa +2.3 psi Systolic blood pressure in a healthy adult while at ...
In SI units, the unit is converted to the SI derived unit pascal (Pa), which is defined as one newton per square metre (N/m 2). A newton is equal to 1 kg⋅m/s 2, and a kilogram-force is 9.80665 N, [3] meaning that 1 kgf/cm 2 equals 98.0665 kilopascals (kPa).
The SI unit for pressure is the pascal (Pa), equal to one newton per square metre (N·m −2 or kg·m −1 ·s −2). This special name for the unit was added in 1971; before that, pressure in SI was expressed in units such as N·m −2. When indicated, the zero reference is stated in parentheses following the unit, for example 101 kPa (abs).
The SI unit for pressure is the pascal (Pa), equal to one newton per square metre (N/m 2, or kg·m −1 ·s −2). This name for the unit was added in 1971; [7] before that, pressure in SI was expressed in newtons per square metre. Other units of pressure, such as pounds per square inch (lbf/in 2) and bar, are also in common use.
One pascal is one newton per square meter (N·m −2 or kg·m −1 ·s −2). Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 and 200 kPa. [2] The most accurate results are obtained near the boiling point of the substance; measurements smaller than 1 kPa are subject to major errors. Procedures ...
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
The standard atmosphere was originally defined as the pressure exerted by a 760 mm column of mercury at 0 °C (32 °F) and standard gravity (g n = 9.806 65 m/s 2). [2] It was used as a reference condition for physical and chemical properties, and the definition of the centigrade temperature scale set 100 °C as the boiling point of water at this pressure.