When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    And that is actually the same as subtracting 7×10 n (clearly a multiple of 7) from 10×10 n. Similarly, when you turn a 3 into a 2 in the following decimal position, you are turning 30×10 n into 2×10 n, which is the same as subtracting 30×10 n −28×10 n, and this is again subtracting a multiple of 7. The same reason applies for all the ...

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  5. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.

  6. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.

  7. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    When the GCD of the exponents is not 1, then powers larger than some value will only appear if they are a multiple of the GCD, e.g. for (+ +), powers of 24, 27,... will appear for some value(s) of but never values larger than 24 that are not multiples of 3 (nor the smaller values, 1-8, 10-14, 16, 17, 19-23).

  8. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  9. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    The 2-order or 2-adic order is simply a special case of the p-adic order at a general prime number p; see p-adic number for more on this broad area of mathematics. Many of the following definitions generalize directly to other primes. For an integer n, the 2-order of n (also called valuation) is the largest natural number ν such that 2 ν ...