Search results
Results From The WOW.Com Content Network
It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...
is everywhere continuous. However, it is not differentiable at = (but is so everywhere else). Weierstrass's function is also everywhere continuous but nowhere differentiable. The derivative f′(x) of a differentiable function f(x) need not be continuous. If f′(x) is continuous, f(x) is said to be continuously differentiable.
A function of class or -function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that all these derivatives are continuous).
A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...
The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...
A function differentiable at a point is continuous at that point. Differentiation is a linear operation in the following sense: if and are two maps which are differentiable at , and is a scalar (a real or complex number), then the Fréchet derivative obeys the following properties: () = (+) = + ().
Analogous results for better behaved classes of continuous functions do exist, for example the Lipschitz functions, whose set of non-differentiability points must be a Lebesgue null set (Rademacher's theorem). When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved.
The sum and difference of two absolutely continuous functions are also absolutely continuous. If the two functions are defined on a bounded closed interval, then their product is also absolutely continuous. [4] If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely ...