Search results
Results From The WOW.Com Content Network
For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7 × 10 8 is 8, whereas the nearest order of magnitude for 3.7 × 10 8 is 9.
[8] [9] Every interval of one magnitude equates to a variation in brightness of 5 √ 100 or roughly 2.512 times. Consequently, a magnitude 1 star is about 2.5 times brighter than a magnitude 2 star, about 2.5 2 times brighter than a magnitude 3 star, about 2.5 3 times brighter than a magnitude 4 star, and so on.
This is also referred to as a "one fold increase". Similarly, a change from 30 to 15 is referred to as a "0.5-fold decrease". Fold change is often used when analysing multiple measurements of a biological system taken at different times as the change described by the ratio between the time points is easier to interpret than the difference.
Borel's law of large numbers, named after Émile Borel, states that if an experiment is repeated a large number of times, independently under identical conditions, then the proportion of times that any specified event is expected to occur approximately equals the probability of the event's occurrence on any particular trial; the larger the ...
Clock time and calendar time have duodecimal or sexagesimal orders of magnitude rather than decimal, e.g., a year is 12 months, and a minute is 60 seconds. The smallest meaningful increment of time is the Planck time―the time light takes to traverse the Planck distance, many decimal orders of magnitude smaller than a second. [1]
In base 10, there is thought to be no number with a multiplicative persistence greater than 11; this is known to be true for numbers up to 2.67×10 30000. [1] [2] The smallest numbers with persistence 0, 1, 2, ... are: 0, 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899. (sequence A003001 in the OEIS)
Thus the "order of magnitude" of a number (on a larger scale than usually meant), can be characterized by the number of times (n) one has to take the to get a number between 1 and 10. Thus, the number is between 10 ↑ ↑ n {\displaystyle 10\uparrow \uparrow n} and 10 ↑ ↑ ( n + 1 ) {\displaystyle 10\uparrow \uparrow (n+1)} .
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.