Search results
Results From The WOW.Com Content Network
In combinatorial mathematics, the exponential formula (called the polymer expansion in physics) states that the exponential generating function for structures on finite sets is the exponential of the exponential generating function for connected structures. The exponential formula is a power series version of a special case of Faà di Bruno's ...
The asymptotic scaling of δ in terms of ε will be determined by the equation – see the example below. Substituting the above ansatz into the differential equation and cancelling out the exponential terms allows one to solve for an arbitrary number of terms S n (x) in the expansion. WKB theory is a special case of multiple scale analysis. [5 ...
In practical terms, the distinction between DAEs and ODEs is often that the solution of a DAE system depends on the derivatives of the input signal and not just the signal itself as in the case of ODEs; [3] this issue is commonly encountered in nonlinear systems with hysteresis, [4] such as the Schmitt trigger.
The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).
to solve for Ω recursively in terms of A "in a continuous analog of the BCH expansion", as outlined in a subsequent section. The equation above constitutes the Magnus expansion, or Magnus series, for the solution of matrix linear initial-value problem. The first four terms of this series read
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
Geometric Brownian motion is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior. [4] Some of the arguments for using GBM to model stock prices are: The expected returns of GBM are independent of the value of the process (stock price), which agrees with what we would expect in ...