Search results
Results From The WOW.Com Content Network
The circle diagram can be drawn for alternators, synchronous motors, transformers, induction motors. The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.
A large Alexanderson alternator might produce 500 kW of output radio-frequency energy and would be water- or oil-cooled. One such machine had 600 pole pairs in the stator winding, and the rotor was driven at 2170 RPM, for an output frequency near 21.7 kHz. To obtain higher frequencies, higher rotor speeds were required, up to 20,000 RPM.
Diesel generator on an oil tanker. The packaged combination of a diesel engine, a generator, and various auxiliary devices (such as a base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, and starting system) is referred to as a "generating set" or a "Genset" in short.
Date of chart, as used in prose. Free-format date (using a format acceptable at MOS:DATE) indicating when the chart was released. String: optional: date: date: Date of chart, as used in a URL string. Required for Frenchdigital (format yyyymmdd with no spaces) or any UK chart (format yyyy-mm-dd ) Number: optional: access date: access-date accessdate
Early automobile generators and alternators had a mechanical voltage regulator using one, two, or three relays and various resistors to stabilize the generator's output at slightly more than 6.7 or 13.4 V to maintain the battery as independently of the engine's rpm or the varying load on the vehicle's electrical system as possible.
Single-phase generator (also known as single-phase alternator) is an alternating current electrical generator that produces a single, continuously alternating voltage. Single-phase generators can be used to generate power in single-phase electric power systems.
At synchronous speed of 1800 RPM, generator will produce no power. When the driving speed is increased to 1860 RPM (typical example), full output power is produced. If the prime mover is unable to produce enough power to fully drive the generator, speed will remain somewhere between 1800 and 1860 RPM range.
Droop speed control is a control mode used for AC electrical power generators, whereby the power output of a generator reduces as the line frequency increases. It is commonly used as the speed control mode of the governor of a prime mover driving a synchronous generator connected to an electrical grid.