Search results
Results From The WOW.Com Content Network
The ring of integers modulo a prime number has no nonzero zero divisors. Since every nonzero element is a unit, this ring is a finite field. More generally, a division ring has no nonzero zero divisors. A non-zero commutative ring whose only zero divisor is 0 is called an integral domain.
A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number, while the units −1 and 1 and prime numbers have no non-trivial divisors. There are divisibility rules that allow one to recognize certain divisors of a ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
A divisor on Spec Z is a formal sum of prime numbers with integer coefficients and therefore corresponds to a non-zero fractional ideal in Q. A similar characterization is true for divisors on Spec O K , {\displaystyle \operatorname {Spec} {\mathcal {O}}_{K},} where K is a number field.
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.)
If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0. [2]
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
An algebraic number is a number that is the root of some non-zero polynomial in one ... is the largest positive number that is a divisor of every integer in the ...