Search results
Results From The WOW.Com Content Network
Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. [ 1 ] [ 2 ] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content , factors which together determine the density of sea ...
The Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array (RAPID or MOCHA) program is a collaborative research project between the National Oceanography Centre (Southampton, U.K.), the University of Miami's Rosenstiel School of Marine, Atmospheric, and Earth Science (RSMAS), and NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) that measure the ...
Thermohaline staircases are patterns that form in oceans and other bodies of salt water, characterised by step-like structures observed in vertical temperature and salinity profiles; the patterns are formed and maintained by double diffusion of heat and salt. The ocean phenomenon consists of well-mixed layers of ocean water stacked on top of ...
Bower investigates ocean circulation, including thermohaline circulation (the so-called ocean conveyor belt), using research floats. [2] [6] [7] Bower goes on research cruises to retrieve the floats and deploy equipment. [5] [8] Her group has deployed hundreds of RAFOS floats in the Arctic Ocean and Gulf of Mexico, among other locations. [9]
In oceanography, an overflow is a type of deep-water circulation in which denser water flows into an adjacent basin beneath lighter water. This process is significant in thermohaline circulation, contributing to the global ocean's deep water mass formation. [1]
Thermohaline Circulation: Density differences drive the thermohaline circulation, also known as the global "conveyor belt," which plays a crucial role in regulating Earth's climate. Cold, dense water formed in the polar regions sinks and moves along the ocean floor toward the equator, while warmer surface waters flow poleward to replace it.
The Thermohaline Circulation is part of the global ocean circulation. Although this phenomenon is not fully understood yet, it is known that its driving processes are thermohaline forcing and turbulent mixing . [ 26 ]
Aside from the oscillatory motions associated with tidal flow, there are two primary causes of large scale flow in the ocean: (1) thermohaline processes, which induce motion by introducing changes at the surface in temperature and salinity, and therefore in seawater density, and (2) wind forcing.