Search results
Results From The WOW.Com Content Network
A percolation test (colloquially called a perc test) is a test to determine the water absorption rate of soil (that is, its capacity for percolation) in preparation for the building of a septic drain field (leach field) or infiltration basin. [1] The results of a percolation test are required to design a septic system properly.
In two dimensional square lattice percolation is defined as follows. A site is "occupied" with probability p or "empty" (in which case its edges are removed) with probability 1 – p; the corresponding problem is called site percolation, see Fig. 2. Percolation typically exhibits universality.
The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice.
Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface.
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters.
Percolation is the study of connectivity in random systems, such as electrical conductivity in random conductor/insulator systems, fluid flow in porous media, gelation in polymer systems, etc. [1] At a critical fraction of connectivity or porosity, long-range connectivity can take place, leading to long-range flow.
Percolation clusters become self-similar precisely at the threshold density for sufficiently large length scales, entailing the following asymptotic power laws: . The fractal dimension relates how the mass of the incipient infinite cluster depends on the radius or another length measure, () at = and for large probe sizes, .
Conductivity near the percolation threshold in physics, occurs in a mixture between a dielectric and a metallic component. The conductivity σ {\displaystyle \sigma } and the dielectric constant ϵ {\displaystyle \epsilon } of this mixture show a critical behavior if the fraction of the metallic component reaches the percolation threshold .