When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  3. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    The radiation pressure again can be seen as the transfer of each photon's momentum to the opaque surface, plus the momentum due to a (possible) recoil photon for a (partially) reflecting surface. Since an incident wave of irradiance I f over an area A has a power of I f A , this implies a flux of I f / E p photons per second per unit area ...

  4. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    [1] [2] The value of m s is the component of spin angular momentum, in units of the reduced Planck constant ħ, parallel to a given direction (conventionally labelled the z –axis). It can take values ranging from + s to − s in integer increments. For an electron, m s can be either ⁠+ + 1 / 2 ⁠ or ⁠− + 1 / 2 ⁠.

  5. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change ...

  6. Spin angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Spin_angular_momentum_of_light

    The general expression for the spin angular momentum is [1] =, where is the speed of light in free space and is the conjugate canonical momentum of the vector potential.The general expression for the orbital angular momentum of light is =, where = {,,,} denotes four indices of the spacetime and Einstein's summation convention has been applied.

  7. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per (). Since 3.4 × 10 14 > 1, quantum effects do not play a role. The waves emitted by this station are well-described by the classical limit and quantum mechanics is not needed.

  8. Template:SI photon units - Wikipedia

    en.wikipedia.org/wiki/Template:SI_photon_units

    Quantity Unit Dimension Notes Name Symbol [nb 1] Name Symbol photon energy: n: 1: count of photons n with energy Q p = h c/λ. [nb 2]photon flux: Φ q: count per second: s −1: T −1: photons per unit time, dn/dt with n = photon number.

  9. Angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_of_light

    The total angular momentum of light consists of two components, both of which act in a different way on a massive colloidal particle inserted into the beam. The spin component causes the particle to spin around its axis, while the other component, known as orbital angular momentum (OAM), causes the particle to rotate around the axis of the beam.