Ads
related to: gcd of two numbers practice worksheet imagesgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is O(n 2). This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.
The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120. In recreational mathematics, arithmetic billiards provide a geometrical method to determine the least common multiple (LCM) and the greatest common divisor (GCD) of two natural numbers. It makes use of reflections inside a ...
Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.
Given two integers a and b, with b ≠ 0, there exist unique integers q and r such that a = bq + r. and 0 ≤ r < |b|, where |b| denotes the absolute value of b. [4] In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder.
The greatest common divisor is not unique: if d is a GCD of p and q, then the polynomial f is another GCD if and only if there is an invertible element u of F such that = and =. In other words, the GCD is unique up to the multiplication by an invertible constant.