When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...

  3. List of derivatives and integrals in alternative calculi

    en.wikipedia.org/wiki/List_of_derivatives_and...

    There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.

  4. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Download as PDF; Printable version ... The theory and applications of fractional calculus expanded greatly over the 19th and 20th centuries, and numerous contributors ...

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation . Given a function and a point in the domain, the derivative at that point is a way of encoding the small-scale behavior of the function near that point.

  6. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]

  7. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    The calculus has been applied to stochastic partial differential equations as well. The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications in, for example, stochastic filtering.

  8. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  9. Calculus on Manifolds (book) - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_Manifolds_(book)

    Calculus on Manifolds is a brief monograph on the theory of vector-valued functions of several real variables (f : R n →R m) and differentiable manifolds in Euclidean space. . In addition to extending the concepts of differentiation (including the inverse and implicit function theorems) and Riemann integration (including Fubini's theorem) to functions of several variables, the book treats ...