When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum bubble pressure method - Wikipedia

    en.wikipedia.org/wiki/Maximum_bubble_pressure_method

    (σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]

  3. Rayleigh–Plesset equation - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Plesset_equation

    The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.

  4. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  5. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    Experimental demonstration of Laplace pressure with soap bubbles. The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two ...

  6. Morton number - Wikipedia

    en.wikipedia.org/wiki/Morton_number

    where g is the acceleration of gravity, is the viscosity of the surrounding fluid, the density of the surrounding fluid, the difference in density of the phases, and is the surface tension coefficient. For the case of a bubble with a negligible inner density the Morton number can be simplified to

  7. Bubble (physics) - Wikipedia

    en.wikipedia.org/wiki/Bubble_(physics)

    Air bubbles rising from a scuba diver in water A soap bubble floating in the air. A bubble is a globule of a gas substance in a liquid. In the opposite case, a globule of a liquid in a gas, is called a drop. [1] Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.

  8. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    For a soap bubble, the surface tension must be divided by the mean thickness, resulting in a capillary length of about meters in air! [5] The equation for λ c {\displaystyle \lambda _{\rm {c}}} can also be found with an extra 2 {\displaystyle {\sqrt {2}}} term, most often used when normalising the capillary height.

  9. Hadamard–Rybczynski equation - Wikipedia

    en.wikipedia.org/wiki/Hadamard–Rybczynski_equation

    the resultant velocity of the bubble. The Hadamard–Rybczynski equation can be derived from the Navier–Stokes equations by considering only the buoyancy force and drag force acting on the moving bubble. The surface tension force and inertia force of the bubble are neglected. [1]