When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...

  4. Dieudonné determinant - Wikipedia

    en.wikipedia.org/wiki/Dieudonné_determinant

    In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by Dieudonné ( 1943 ). If K is a division ring, then the Dieudonné determinant is a group homomorphism from the group GL n ( K ) of invertible n -by- n matrices over K onto the ...

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ⁡ ( B ) d . {\displaystyle \det ...

  7. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    where is the matrix formed by replacing the i-th column of A by the column vector b. A more general version of Cramer's rule [13] considers the matrix equation = where the n × n matrix A has a nonzero determinant, and X, B are n × m matrices.

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  9. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...