Search results
Results From The WOW.Com Content Network
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The square root function is continuous for all nonnegative x, and differentiable for all positive x. If f denotes the square root function, whose derivative is given by: ′ =. The Taylor series of + about x = 0 converges for | x | ≤ 1, and is given by
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
The derivative of the function at a point is the slope of the line tangent to the curve at the point. The slope of the constant function is 0, because the tangent line to the constant function is horizontal and its angle is 0.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The square root of x is a partial inverse to f(x) = x 2. Even if a function f is not one-to-one, it may be possible to define a partial inverse of f by restricting the domain. For example, the function = is not one-to-one, since x 2 = (−x) 2.
The function f(x) = x + x 4/3 also has a root at 0, where it is continuously differentiable. Although the first derivative f ′ is nonzero at the root, the second derivative f ′′ is nonexistent there, so that quadratic convergence cannot be guaranteed. In fact the Newton iteration is given by