Search results
Results From The WOW.Com Content Network
Cyclohexanol is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [5]. 2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid.
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric ...
The designation rac-chiro-inositol has been used for the racemic mixture (racemate) of equal parts of the two chiro isomers. It crystallizes as a single phase, rather than separate D and L crystals, that melts at 250 °C (which is 4–5 °C higher than the melting point of the pure enantiomers) and decomposes between 308 and 344 °C.
Triple point: 279.48 K (6.33 °C), 5.388 kPa [3] Critical point: 554 K (281 °C), 4070 kPa Std enthalpy change of fusion, Δ fus H o: 2.68 kJ/mol crystal I → liquid Std entropy change of fusion, Δ fus S o: 9.57 J/(mol·K) crystal I → liquid Std enthalpy change of vaporization, Δ vap H o: 32 kJ/mol Std entropy change of vaporization, Δ ...
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Cyclohexane has two crystalline phases. The high-temperature phase I, stable between 186 K and the melting point 280 K, is a plastic crystal, which means the molecules retain some rotational degree of freedom. The low-temperature (below 186 K) phase II is ordered.
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.