Search results
Results From The WOW.Com Content Network
HPLC is widely used for manufacturing (e.g., during the production process of pharmaceutical and biological products), [4] [5] legal (e.g., detecting performance enhancement drugs in urine), [6] research (e.g., separating the components of a complex biological sample, or of similar synthetic chemicals from each other), and medical (e.g ...
The charged aerosol detector (CAD) is a detector used in conjunction with high-performance liquid chromatography (HPLC) and ultra high-performance liquid chromatography (UHPLC) to measure the amount of chemicals in a sample by creating charged aerosol particles which are detected using an electrometer.
Chronoamperometry is the technique in which the current is measured, at a fixed potential, at different times since the start of polarisation. Chronoamperometry is typically carried out in unstirred solution and at the fixed electrode, i.e., under experimental conditions avoiding convection as the mass transfer to the electrode.
An assay (analysis) is never an isolated process, as it must be accompanied with pre- and post-analytic procedures. Both the communication order (the request to perform an assay plus related information) and the handling of the specimen itself (the collecting, documenting, transporting, and processing done before beginning the assay) are pre-analytic steps.
The researcher found that, in this case, reverse phase HPLC, was a better, more sensitive technique despite the time savings in direct injection. [21] Analysis of pharmaceuticals by MLC is also gaining popularity. The selectivity and peak shape of MLC over commonly used ion-pair chromatography is much enhanced. [22]
For example, gentamicin is an antibiotic that can be nephrotoxic (kidney damaging) and ototoxic (hearing damaging); measurement of gentamicin through concentrations in a patient's plasma and calculation of the AUC is used to guide the dosage of this drug. [3] AUC becomes useful for knowing the average concentration over a time interval, AUC/t.
Silica gel particles are commonly used as a stationary phase in high-performance liquid chromatography (HPLC) for several reasons, [13] [14] including: High surface area: Silica gel particles have a high surface area, allowing direct interactions with solutes or after bonding of variety of ligands for versatile interactions with the sample molecules, leading to better separations.
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]