Ad
related to: imaginary numbers with square roots
Search results
Results From The WOW.Com Content Network
Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, + and , where i is the imaginary unit. In general, any non-zero complex number has n distinct complex-valued n th roots, equally distributed around a complex circle of constant absolute value .
The complex numbers contain a number i, the imaginary unit, with i 2 = −1, i.e., i is a square root of −1. Every complex number can be represented in the form x + iy, where x and y are real numbers called the real part and the imaginary part of the complex number respectively.
In the case of three real roots, the square root expression is an imaginary number; here any real root is expressed by defining the first cube root to be any specific complex cube root of the complex radicand, and by defining the second cube root to be the complex conjugate of the first one.
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]