Search results
Results From The WOW.Com Content Network
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint (in other words, no two of them share an element).
The significance of NP-completeness was made clear by the publication in 1972 of Richard Karp's landmark paper, "Reducibility among combinatorial problems", in which he showed that 21 diverse combinatorial and graph theoretical problems, each infamous for its intractability, are NP-complete. [1] Karp showed each of his problems to be NP ...
The exact cover problem is NP-complete [3] and is one of Karp's 21 NP-complete problems. [4] It is NP-complete even when each subset in S contains exactly three elements; this restricted problem is known as exact cover by 3-sets, often abbreviated X3C. [3] Knuth's Algorithm X is an algorithm that finds all solutions to an exact cover problem.
In 1972, Richard Karp proved that several other problems were also NP-complete (see Karp's 21 NP-complete problems); thus, there is a class of NP-complete problems (besides the Boolean satisfiability problem).
Richard Manning Karp (born January 3, 1935) is an American computer scientist and computational theorist at the University of California, Berkeley.He is most notable for his research in the theory of algorithms, for which he received a Turing Award in 1985, The Benjamin Franklin Medal in Computer and Cognitive Science in 2004, and the Kyoto Prize in 2008.
The decision problem is one of Karp's 21 NP-complete problems; hence the optimization problem is NP-hard. Steiner tree problems in graphs are applied to various problems in research and industry, [7] including multicast routing [8] and bioinformatics. [9]