When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    For example, if the functional form of the model does not match the data, R 2 can be high despite a poor model fit. Anscombe's quartet consists of four example data sets with similarly high R 2 values, but data that sometimes clearly does not fit the regression line. Instead, the data sets include outliers, high-leverage points, or non-linearities.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or 'reasonable'. This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to 'reasonable' conclusions ...

  5. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    [15] MICE is designed for missing at random data, though there is simulation evidence to suggest that with a sufficient number of auxiliary variables it can also work on data that are missing not at random. However, MICE can suffer from performance problems when the number of observation is large and the data have complex features, such as ...

  6. Completeness (statistics) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(statistics)

    This example will show that, in a sample X 1, X 2 of size 2 from a normal distribution with known variance, the statistic X 1 + X 2 is complete and sufficient. Suppose X 1, X 2 are independent, identically distributed random variables, normally distributed with expectation θ and variance 1. The sum

  7. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Instrumental variables — a regression which requires that certain additional data variables z, called instruments, were available. These variables should be uncorrelated with the errors in the equation for the dependent (outcome) variable (valid), and they should also be correlated (relevant) with the true regressors x*. If such variables can ...

  8. Mediation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mediation_(statistics)

    Simple mediation model. The independent variable causes the mediator variable; the mediator variable causes the dependent variable. In statistics, a mediation model seeks to identify and explain the mechanism or process that underlies an observed relationship between an independent variable and a dependent variable via the inclusion of a third hypothetical variable, known as a mediator ...

  9. Internal validity - Wikipedia

    en.wikipedia.org/wiki/Internal_validity

    In scientific experimental settings, researchers often change the state of one variable (the independent variable) to see what effect it has on a second variable (the dependent variable). [3] For example, a researcher might manipulate the dosage of a particular drug between different groups of people to see what effect it has on health.