When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proton pump - Wikipedia

    en.wikipedia.org/wiki/Proton_pump

    It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or ...

  3. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    It has two components: a difference in proton concentration (a H + gradient, ΔpH) and a difference in electric potential, with the N-side having a negative charge. [ 4 ] ATP synthase releases this stored energy by completing the circuit and allowing protons to flow down the electrochemical gradient, back to the N-side of the membrane. [ 5 ]

  4. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    These gradients - charge difference and the proton concentration difference both create a combined electrochemical gradient across the membrane, often expressed as the proton-motive force (PMF). In mitochondria, the PMF is almost entirely made up of the electrical component but in chloroplasts the PMF is made up mostly of the pH gradient ...

  5. F-ATPase - Wikipedia

    en.wikipedia.org/wiki/F-ATPase

    The Bovine Mitochondrial F 1-ATPase Complexed with the inhibitor protein If1 is commonly cited in the relevant literature. Examples of its use may be found in many cellular fundamental metabolic activities such as acidosis and alkalosis and respiratory gas exchange.

  6. V-ATPase - Wikipedia

    en.wikipedia.org/wiki/V-ATPase

    V-ATPases couple the energy of ATP hydrolysis to proton transport across intracellular and plasma membranes of eukaryotic cells. It is generally seen as the polar opposite of ATP synthase because ATP synthase is a proton channel that uses the energy from a proton gradient to produce ATP. V-ATPase however, is a proton pump that uses the energy ...

  7. Mitochondrion - Wikipedia

    en.wikipedia.org/wiki/Mitochondrion

    A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy . [ 2 ]

  8. Inner mitochondrial membrane - Wikipedia

    en.wikipedia.org/wiki/Inner_mitochondrial_membrane

    This ratio is variable and mitochondria from cells that have a greater demand for ATP, such as muscle cells, contain even more cristae. Cristae membranes are studded on the matrix side with small round protein complexes known as F 1 particles, the site of proton-gradient driven ATP synthesis. Cristae affect overall chemiosmotic function of ...

  9. Mitochondrial membrane transport protein - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_membrane...

    Complex III and IV are proton pumps, pumping H+ protons out of the mitochondrial matrix, and work in conjunction with complex I to create the proton gradient found at the inner membrane. Cytochrome c is and electron carrier protein that travels between complex III and IV, and triggers apoptosis if it leaves the cristae. Complex IV passes ...