When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    One easily sees that those discontinuities are all removable. By the first paragraph, there does not exist a function that is continuous at every rational point, but discontinuous at every irrational point. The indicator function of the rationals, also known as the Dirichlet function, is discontinuous everywhere. These discontinuities are all ...

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  4. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A point where a function is discontinuous is called a discontinuity. Using mathematical notation, several ways exist to define continuous functions in the three senses mentioned above. Let f : D → R {\displaystyle f:D\to \mathbb {R} } be a function defined on a subset D {\displaystyle D} of the set R {\displaystyle \mathbb {R} } of real numbers.

  6. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  7. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  8. Volterra's function - Wikipedia

    en.wikipedia.org/wiki/Volterra's_function

    Thus there are points where V ′ takes values 1 and −1 in every neighborhood of each of the endpoints of intervals removed in the construction of the Smith–Volterra–Cantor set S. In fact, V ′ is discontinuous at every point of S, even though V itself is differentiable at every point of S, with derivative 0.

  9. Discrete fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Discrete_fixed-point_theorem

    Continuous fixed-point theorems often require a convex set. The analogue of this property for discrete sets is an integrally-convex set. A fixed point of a discrete function f is defined exactly as for continuous functions: it is a point x for which f(x)=x.