Search results
Results From The WOW.Com Content Network
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications.
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications.
The code for the math example reads: <math display= "inline" > \sum_{i=0}^\infty 2^{-i} </math> The quotation marks around inline are optional and display=inline is also valid. [2] Technically, the command \textstyle will be added to the user input before the TeX command is passed to the renderer. The result will be displayed without further ...
In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [ 1 ] [ 2 ] It is given by θ ( z ; q ) := ∏ n = 0 ∞ ( 1 − q n z ) ( 1 − q n + 1 / z ) {\displaystyle \theta (z;q):=\prod _{n=0}^{\infty }(1-q^{n}z)\left(1-q^{n+1}/z\right)}
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ((+)) for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.