When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diameter - Wikipedia

    en.wikipedia.org/wiki/Diameter

    To construct a diameter parallel to a given line, choose the chord to be perpendicular to the line. The circle having a given line segment as its diameter can be constructed by straightedge and compass, by finding the midpoint of the segment and then drawing the circle centered at the midpoint through one of the ends of the line segment.

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The intersections of the two sides with the circumference define a diameter (figure 2). Repeating this with a different set of intersections yields another diameter (figure 3). The centre is at the intersection of the diameters. Illustration of the use of Thales's theorem and a right angle to find the centre of a circle

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Construct the midpoint M of the diameter. Construct the circle with centre M passing through one of the endpoints of the diameter (it will also pass through the other endpoint). Construct a circle through points A, B and C by finding the perpendicular bisectors (red) of the sides of the triangle (blue).

  5. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.

  6. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]

  7. Diameter (disambiguation) - Wikipedia

    en.wikipedia.org/wiki/Diameter_(disambiguation)

    Diameter (group theory), the maximum diameter of a Cayley graph of the group; Equivalent diameter, the diameter of a circle or sphere with the same area, perimeter, or volume as another object; Hydraulic diameter, the equivalent diameter of a tube or channel for fluids; Kinetic diameter, a measure of particles in a gas related to the mean free path

  8. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The useful minimum bounding circle of three points is defined either by the circumcircle (where three points are on the minimum bounding circle) or by the two points of the longest side of the triangle (where the two points define a diameter of the circle). It is common to confuse the minimum bounding circle with the circumcircle.

  9. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk.