Search results
Results From The WOW.Com Content Network
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates .
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
In terms of the hyperbolic angle parameter a, the unit hyperbola consists of points ( + ), where j = (0,1). The right branch of the unit hyperbola corresponds to the positive coefficient. In fact, this branch is the image of the exponential map acting on the j-axis.
The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below). The equations are derived [ 2 ] from depth-integrating the Navier–Stokes equations , in the case where the horizontal length scale is much greater than the vertical ...
The Lax–Wendroff method, named after Peter Lax and Burton Wendroff, [1] is a numerical method for the solution of hyperbolic partial differential equations, based on finite differences. It is second-order accurate in both space and time.
In small dimensions, there are exceptional isomorphisms of Lie groups that yield additional ways to consider symmetries of hyperbolic spaces. For example, in dimension 2, the isomorphisms SO + (1, 2) ≅ PSL(2, R) ≅ PSU(1, 1) allow one to interpret the upper half plane model as the quotient SL(2, R)/SO(2) and the Poincaré disc model as the ...