When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Byte pair encoding - Wikipedia

    en.wikipedia.org/wiki/Byte_pair_encoding

    Byte pair encoding [1] [2] (also known as digram coding) [3] is an algorithm, first described in 1994 by Philip Gage, for encoding strings of text into smaller strings by creating and using a translation table. [4]

  3. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  4. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    Hugging Face, Inc. is an American company incorporated under the Delaware General Corporation Law [1] and based in New York City that develops computation tools for building applications using machine learning.

  5. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]

  6. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    After embedding, the vector representation is normalized using a LayerNorm operation, outputting a 768-dimensional vector for each input token. After this, the representation vectors are passed forward through 12 Transformer encoder blocks, and are decoded back to 30,000-dimensional vocabulary space using a basic affine transformation layer.

  8. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  9. Embedding - Wikipedia

    en.wikipedia.org/wiki/Embedding

    An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image). [ 4 ] In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold .