Search results
Results From The WOW.Com Content Network
The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [ 16 ] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
In the linear approximation, the period of swing is approximately the same for different size swings: that is, the period is independent of amplitude. This property, called isochronism, is the reason pendulums are so useful for timekeeping. [7] Successive swings of the pendulum, even if changing in amplitude, take the same amount of time.
Repeatedly timing each period of a Kater pendulum, and adjusting the weights until they were equal, was time-consuming and error-prone. Friedrich Bessel showed in 1826 that this was unnecessary. As long as the periods measured from each pivot, T 1 and T 2, are close in value, the period T of the equivalent simple pendulum can be calculated from ...
Other phenomena can be modeled by simple harmonic motion, including the motion of a simple pendulum, although for it to be an accurate model, the net force on the object at the end of the pendulum must be proportional to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle ...
Schematic of a cycloidal pendulum. The tautochrone problem was studied by Huygens more closely when it was realized that a pendulum, which follows a circular path, was not isochronous and thus his pendulum clock would keep different time depending on how far the pendulum swung. After determining the correct path, Christiaan Huygens attempted to ...
In economics, many theoretical models of the evolution of various economic variables are constructed in continuous time and therefore employ time derivatives. [3]: ch. 1-3 One situation involves a stock variable and its time derivative, a flow variable. Examples include: The flow of net fixed investment is the time derivative of the capital stock.