When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in ...

  3. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    The residuals from the least squares linear fit to this plot are identical to the residuals from the least squares fit of the original model (Y against all the independent variables including Xi). The influences of individual data values on the estimation of a coefficient are easy to see in this plot.

  4. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    R 2 = 0.998, and norm of residuals = 0.302. If all values of y are multiplied by 1000 (for example, in an SI prefix change), then R 2 remains the same, but norm of residuals = 302. Another single-parameter indicator of fit is the RMSE of the residuals, or standard deviation of the residuals. This would have a value of 0.135 for the above ...

  5. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.

  6. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    The CCPR (component and component-plus-residual) plot is a refinement of the partial residual plot, adding ^ . This is the "component" part of the plot and is intended to show where the "fitted line" would lie.

  7. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    This can also be seen because the residuals at endpoints depend greatly on the slope of a fitted line, while the residuals at the middle are relatively insensitive to the slope. The fact that the variances of the residuals differ, even though the variances of the true errors are all equal to each other, is the principal reason for the need for ...

  8. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  9. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In particular, the residuals should be independent of each other and constant in mean and variance over time. (Plotting the mean and variance of residuals over time and performing a Ljung–Box test or plotting autocorrelation and partial autocorrelation of the residuals are helpful to identify misspecification.) If the estimation is inadequate ...