Search results
Results From The WOW.Com Content Network
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.
Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics, as it has become evident that practically all laws of nature originate in symmetries.
Antipodal symmetry is an alternative name for a point reflection symmetry through the origin. [14] Such a "reflection" preserves orientation if and only if k is an even number. [15] This implies that for m = 3 (as well as for other odd m), a point reflection changes the orientation of the space, like a mirror-image symmetry.
The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...
Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin. If = is in the domain of an odd function (), then () =. Examples of odd functions are:
r8 is full symmetry of the square, and a1 is no symmetry. d4 is the symmetry of a rectangle, and p4 is the symmetry of a rhombus. These two forms are duals of each other, and have half the symmetry order of the square. d2 is the symmetry of an isosceles trapezoid, and p2 is the symmetry of a kite. g2 defines the geometry of a parallelogram.
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
Given any function in variables with values in an abelian group, a symmetric function can be constructed by summing values of over all permutations of the arguments. . Similarly, an anti-symmetric function can be constructed by summing over even permutations and subtracting the sum over odd permut