When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  3. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Mass is constant, therefore angular momentum rmv ⊥ is conserved by this exchange of distance and velocity. In the case of triangle SBC, area is equal to ⁠ 1 / 2 ⁠ (SB)(VC). Wherever C is eventually located due to the impulse applied at B, the product (SB)(VC), and therefore rmv ⊥ remain constant. Similarly so for each of the triangles.

  4. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    If mass is used, specific impulse is an impulse per unit of mass, which dimensional analysis shows to be equivalent to units of speed; this interpretation is commonly labeled the effective exhaust velocity. If a force-based unit system is used, impulse is divided by propellant weight (weight is a measure of force), resulting in units of time.

  5. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  6. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  7. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  8. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point. For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta.

  9. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    α is the angle of attack; m is the vehicle's mass; D is the vehicle's aerodynamic drag; L is its aerodynamic lift; r is the radial distance to the planet's center; and; g is the gravitational acceleration at altitude. Mass decreases as propellant is consumed and rocket stages, engines or tanks are shed (if applicable).