Search results
Results From The WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
Internal consistency is usually measured with Cronbach's alpha, a statistic calculated from the pairwise correlations between items. Internal consistency ranges between negative infinity and one. Coefficient alpha will be negative whenever there is greater within-subject variability than between-subject variability. [1]
If the correlation between separate administrations of the test is high (e.g. 0.7 or higher as in this Cronbach's alpha-internal consistency-table [6]), then it has good test–retest reliability. The repeatability coefficient is a precision measure which represents the value below which the absolute difference between two repeated test results ...
It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like Cronbach's α, homogeneity (that is, unidimensionality) is actually an assumption, not a conclusion, of reliability coefficients.
For the reliability of a two-item test, the formula is more appropriate than Cronbach's alpha (used in this way, the Spearman-Brown formula is also called "standardized Cronbach's alpha", as it is the same as Cronbach's alpha computed using the average item intercorrelation and unit-item variance, rather than the average item covariance and ...
Fleiss' kappa is a generalisation of Scott's pi statistic, [2] a statistical measure of inter-rater reliability. [3] It is also related to Cohen's kappa statistic and Youden's J statistic which may be more appropriate in certain instances. [4]
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
The Kaiser–Meyer–Olkin (KMO) test is a statistical measure to determine how suited data is for factor analysis.The test measures sampling adequacy for each variable in the model and the complete model.