When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bromine compounds - Wikipedia

    en.wikipedia.org/wiki/Bromine_compounds

    Silver bromide (AgBr). Nearly all elements in the periodic table form binary bromides. The exceptions are decidedly in the minority and stem in each case from one of three causes: extreme inertness and reluctance to participate in chemical reactions (the noble gases, with the exception of xenon in the very unstable XeBr 2; extreme nuclear instability hampering chemical investigation before ...

  3. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...

  4. Bromine water - Wikipedia

    en.wikipedia.org/wiki/Bromine_water

    Bromine water, Br 2. Bromine water is an oxidizing, intense brown mixture containing diatomic bromine (Br 2) dissolved in water (H 2 O). [1] It is often used as a reactive in chemical assays of recognition for substances which react with bromine in an aqueous environment with the halogenation mechanism, mainly unsaturated carbon compounds (carbon compounds with 1 or more double or triple bond(s)).

  5. Bromate - Wikipedia

    en.wikipedia.org/wiki/Bromate

    Bromates are formed many different ways in municipal drinking water. The most common is the reaction of ozone and bromide: Br − + O 3 → BrO − 3. Electrochemical processes, such as electrolysis of brine without a membrane operating to form hypochlorite, will also produce bromate when bromide ion is present in the brine solution.

  6. Bromine - Wikipedia

    en.wikipedia.org/wiki/Bromine

    Organobromides are the most common organohalides in nature, even though the concentration of bromide is only 0.3% of that for chloride in sea water, because of the easy oxidation of bromide to the equivalent of Br +, a potent electrophile. The enzyme bromoperoxidase catalyzes this reaction. [52]

  7. Bromide - Wikipedia

    en.wikipedia.org/wiki/Bromide

    The classic case is sodium bromide, which fully dissociates in water: NaBr → Na + + Br −. Hydrogen bromide, which is a diatomic molecule, takes on salt-like properties upon contact with water to give an ionic solution called hydrobromic acid. The process is often described simplistically as involving formation of the hydronium salt of bromide:

  8. Cyanogen bromide - Wikipedia

    en.wikipedia.org/wiki/Cyanogen_bromide

    The compound is linear and polar, but it does not spontaneously ionize in water. It dissolves in both water and polar organic solvents. Cyanogen bromide can be prepared by oxidation of sodium cyanide with bromine, which proceeds in two steps via the intermediate cyanogen ((CN) 2): 2 NaCN + Br 2 → (CN) 2 + 2 NaBr (CN) 2 + Br 2 → 2 (CN)Br

  9. Sodium bromide - Wikipedia

    en.wikipedia.org/wiki/Sodium_bromide

    Dihydrate salt (NaBr·2H 2 O) crystallize out of water solution below 50.7 °C. [8] NaBr is produced by treating sodium hydroxide with hydrogen bromide. Sodium bromide can be used as a source of the chemical element bromine. This can be accomplished by treating an aqueous solution of NaBr with chlorine gas: 2 NaBr + Cl 2 → Br 2 + 2 NaCl