When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transpiration - Wikipedia

    en.wikipedia.org/wiki/Transpiration

    Transpiration of water in xylem Stoma in a tomato leaf shown via colorized scanning electron microscope The clouds in this image of the Amazon Rainforest are a result of evapotranspiration. Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers.

  3. Transpirational cooling (biological) - Wikipedia

    en.wikipedia.org/wiki/Transpirational_cooling...

    Transpiration is the movement of water through a plant and out of its leaves and other aerial parts into the atmosphere. This movement is driven by solar energy. [ 4 ] In the tallest trees, such as Sequoia sempervirens , the water rises well over 100 metres from root-tip to canopy leaves.

  4. Transpiration stream - Wikipedia

    en.wikipedia.org/wiki/Transpiration_stream

    3- Water moves from the xylem into the mesophyll cells, evaporates from their surfaces and leaves the plant by diffusion through the stomata. In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/apoplast ...

  5. Evapotranspiration - Wikipedia

    en.wikipedia.org/wiki/Evapotranspiration

    Transpiration: the movement of water from root systems, through a plant, and exit into the air as water vapor. This exit occurs through stomata in the plant. Rate of transpiration can be influenced by factors including plant type, soil type, weather conditions and water content, and also cultivation practices. [6]: Ch. 1, "Transpiration"

  6. Water-use efficiency - Wikipedia

    en.wikipedia.org/wiki/Water-use_efficiency

    However, there is some question as to the benefit of increased water-use efficiency of plants in agricultural systems, as the processes of increased yield production and decreased water loss due to transpiration (that is, the main driver of increases in water-use efficiency) are fundamentally opposed.

  7. Guard cell - Wikipedia

    en.wikipedia.org/wiki/Guard_cell

    When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by the roots. Plants must balance the amount of CO 2 absorbed from the air with the water loss through the stomatal pores, and this is achieved by both active and passive control of guard cell turgor pressure and ...

  8. Xylem - Wikipedia

    en.wikipedia.org/wiki/Xylem

    Water is constantly lost through transpiration from the leaf. When one water molecule is lost another is pulled along by the processes of cohesion and tension. Transpiration pull, utilizing capillary action and the inherent surface tension of water, is the primary mechanism of water movement in plants. However, it is not the only mechanism ...

  9. Absorption of water - Wikipedia

    en.wikipedia.org/wiki/Absorption_of_water

    The continuity of the water column remains intact due to the cohesion between the molecules and it acts as a rope. Roots simply act as a passive organ of absorption. As transpiration proceeds, water absorption occurs simultaneously to compensate the water loss from the leaf end. Most volume of water entering plants is by means of passive ...