Ads
related to: hyperbolic equation calculator math
Search results
Results From The WOW.Com Content Network
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates .
This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .
In terms of the hyperbolic angle parameter a, the unit hyperbola consists of points ( + ), where j = (0,1). The right branch of the unit hyperbola corresponds to the positive coefficient. In fact, this branch is the image of the exponential map acting on the j-axis.
In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by Sergei Godunov in 1959, [1] for solving partial differential equations. One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In ...
Hyperbolic functions occur in the calculation of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates.
The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.