Search results
Results From The WOW.Com Content Network
In mathematics, a Möbius strip, Möbius band, or Möbius loop [a] is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE .
He (independently) discovered the properties of the Möbius strip, or half-twisted strip, at the same time (1858) as August Ferdinand Möbius, and went further in exploring the properties of strips with higher-order twists (paradromic rings). He discovered topological invariants which came to be called Listing numbers. [2]
He is best known for his discovery of the Möbius strip, a non-orientable two-dimensional surface with only one side when embedded in three-dimensional Euclidean space. It was independently discovered by Johann Benedict Listing a few months earlier. [3] The Möbius configuration, formed by two mutually inscribed tetrahedra, is also named after him.
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
A tritetraflexagon can be folded from a strip of paper as shown. This figure has two faces visible, built of squares marked with As and Bs. The face of Cs is hidden inside the flexagon. The tritetraflexagon is the simplest tetraflexagon (flexagon with square sides). The "tri" in the name means it has three faces, two of which are visible at any ...
Penrose triangle. The Penrose triangle, also known as the Penrose tribar, the impossible tribar, [1] or the impossible triangle, [2] is a triangular impossible object, an optical illusion consisting of an object which can be depicted in a perspective drawing.
The Möbius strip is a surface on which the distinction between clockwise and counterclockwise can be defined locally, but not globally. In general, a surface is said to be orientable if it does not contain a homeomorphic copy of the Möbius strip; intuitively, it has two distinct "sides". For example, the sphere and torus are orientable, while ...
As with a Möbius strip, once the two distinct connections have been made, we can no longer identify which connection is "normal" and which is "reversed" – the lack of a global definition for charge becomes a feature of the global geometry. This behaviour is analogous to the way that a small piece of a Möbius strip allows a local distinction ...