When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function. [11] A strongly convex function is also strictly convex, but not vice versa.

  3. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  4. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    It is an example of a hedgehog, a type of curve determined as the envelope of a system of lines with a continuous support function. The hedgehogs also include non-convex curves, such as the astroid , and even self-crossing curves, but the smooth strictly convex curves are the only hedgehogs that have no singular points.

  5. Convexity in economics - Wikipedia

    en.wikipedia.org/wiki/Convexity_in_economics

    Convexity is a geometric property with a variety of applications in economics. [1] Informally, an economic phenomenon is convex when "intermediates (or combinations) are better than extremes". For example, an economic agent with convex preferences prefers combinations of goods over having a lot of any one sort of good; this represents a kind of ...

  6. Convexity (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Convexity_(algebraic_geometry)

    In algebraic geometry, convexity is a restrictive technical condition for algebraic varieties originally introduced to analyze Kontsevich moduli spaces ¯, (,) in quantum cohomology. [ 1 ] : §1 [ 2 ] [ 3 ] These moduli spaces are smooth orbifolds whenever the target space is convex.

  7. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .

  8. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.

  9. List of convexity topics - Wikipedia

    en.wikipedia.org/wiki/List_of_convexity_topics

    The convexity property can make optimization in some sense "easier" than the general case - for example, any local minimum must be a global minimum. Convex polygon - a 2-dimensional polygon whose interior is a convex set in the Euclidean plane. Convex polytope - an n-dimensional polytope which is also a convex set in the Euclidean n-dimensional ...