Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...
When z is 1, the function is called the sigma function or sum-of-divisors function, [1] [3] and the subscript is often omitted, so σ(n) is the same as σ 1 (n) (OEIS: A000203). The aliquot sum s ( n ) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS : A001065 ), and equals σ 1 ( n ) − n ; the aliquot ...
1, −1, and are known as the trivial divisors of . A divisor of n {\displaystyle n} that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [ 6 ] ). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.
Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...
The number 5 is untouchable, as it is not the sum of the proper divisors of any positive integer: 5 = 1 + 4 is the only way to write 5 as the sum of distinct positive integers including 1, but if 4 divides a number, 2 does also, so 1 + 4 cannot be the sum of all of any number's proper divisors (since the list of factors would have to contain ...
In mathematics, the amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function). The smallest pair of amicable numbers is ...
where, is the divisor function, and is the Möbius function. This multiplicative arithmetical function was introduced by the Indian mathematician Subbayya Sivasankaranarayana Pillai in 1933. [ 3 ]
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.