Ads
related to: divisor functions pdf worksheet answers keystudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
The restriction of the divisors in the convolution to unitary, bi-unitary or infinitary divisors defines similar commutative operations which share many features with the Dirichlet convolution (existence of a Möbius inversion, persistence of multiplicativity, definitions of totients, Euler-type product formulas over associated primes, etc.).
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:
An average order of d(n), the number of divisors of n, is log n; An average order of σ(n), the sum of divisors of n, is nπ 2 / 6; An average order of φ(n), Euler's totient function of n, is 6n / π 2; An average order of r(n), the number of ways of expressing n as a sum of two squares, is π;
An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n. Arithmetic functions are often extremely irregular (see table ), but some of them have series expansions in terms of Ramanujan's sum .