Search results
Results From The WOW.Com Content Network
It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
where B is the incomplete beta function. A Poisson compounded with Log( p )-distributed random variables has a negative binomial distribution . In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ...
The Maclaurin series of the logarithm function (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.
The Maclaurin series of an even function includes only even powers. The Maclaurin series of an odd function includes only odd powers. The Fourier series of a periodic even function includes only cosine terms. The Fourier series of a periodic odd function includes only sine terms. The Fourier transform of a purely real-valued even function is ...