When.com Web Search

  1. Ads

    related to: triangular numbers 1 to 100

Search results

  1. Results From The WOW.Com Content Network
  2. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...

  3. Centered triangular number - Wikipedia

    en.wikipedia.org/wiki/Centered_triangular_number

    Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if positive) is the previous regular triangular number. Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers. For n > 2, the sum of the first n centered triangular numbers is the magic constant for an n ...

  4. Polygonal number - Wikipedia

    en.wikipedia.org/wiki/Polygonal_number

    The triangular number sequence is the representation of the numbers in the form of equilateral triangle arranged in a series or sequence. These numbers are in a sequence of 1, 3, 6, 10, 15, 21, 28, 36, 45, and so on.

  5. List of numbers - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/List_of_numbers

    A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.

  6. Square triangular number - Wikipedia

    en.wikipedia.org/wiki/Square_triangular_number

    Consequently, a square number is also triangular if and only if + is square, that is, there are numbers and such that =. This is an instance of the Pell equation x 2 − n y 2 = 1 {\displaystyle x^{2}-ny^{2}=1} with n = 8 {\displaystyle n=8} .

  7. Doubly triangular number - Wikipedia

    en.wikipedia.org/wiki/Doubly_triangular_number

    In mathematics, the doubly triangular numbers are the numbers that appear within the sequence of triangular numbers, in positions that are also triangular numbers. That is, if T n = n ( n + 1 ) / 2 {\displaystyle T_{n}=n(n+1)/2} denotes the n {\displaystyle n} th triangular number, then the doubly triangular numbers are the numbers of the form ...