Search results
Results From The WOW.Com Content Network
The bite force of a 5.2 m (17 ft) saltwater crocodile [20] 18 kN The estimated bite force of a 6.1 m (20 ft) adult great white shark [21] 25 kN Approximate force applied by the motors of a Tesla Model S during maximal acceleration [22] 25.5 to 34.5 kN The estimated bite force of a large 6.7 m (22 ft) adult saltwater crocodile [23] 10 5 N 100 kN
The rope example is an example involving a 'pull' force. The centripetal force can also be supplied as a 'push' force, such as in the case where the normal reaction of a wall supplies the centripetal force for a wall of death or a Rotor rider. Newton's idea of a centripetal force corresponds to what is nowadays referred to as a central force.
[12] [13]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
An example of linear motion is an athlete running a 100-meter dash along a straight track. [2] Linear motion is the most basic of all motion. According to Newton's first law of motion, objects that do not experience any net force will continue to
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: =. If the resultant force F → {\displaystyle {\vec {F}}} acting on a body or an object is not equal to zero, the body will have an acceleration a {\displaystyle a} that is in the ...