Search results
Results From The WOW.Com Content Network
The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863. The flow field associated with the trochoidal wave is not irrotational: it has vorticity.
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area . Here t ^ {\displaystyle \mathbf {\hat {t}} \,\!} is a unit vector in the direction of the flow/current/flux.
Stokes drift – Average velocity of a fluid parcel in a gravity wave; Undertow (water waves) – Return flow below nearshore water waves. Ursell number – Dimensionless number indicating the nonlinearity of long surface gravity waves on a fluid layer. Wave shoaling – Effect by which surface waves entering shallower water change in wave height
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
Simulation of wave penetration—involving diffraction and refraction—into Tedious Creek, Maryland, using CGWAVE (which solves the mild-slope equation). In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.