Ad
related to: perpendicular sides example in real life
Search results
Results From The WOW.Com Content Network
Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.
The segment AB is perpendicular to the segment CD because the two angles it creates (indicated in orange and blue) are each 90 degrees. The segment AB can be called the perpendicular from A to the segment CD, using "perpendicular" as a noun. The point B is called the foot of the perpendicular from A to segment CD, or simply, the foot of A on CD ...
The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.
Thus, the longest altitude is perpendicular to the shortest side of the triangle. The altitudes are also related to the sides of the triangle through the trigonometric functions. In an isosceles triangle (a triangle with two congruent sides), the altitude having the incongruent side as its base will have the midpoint of that
The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written a 2 + b 2 = c 2 , {\displaystyle a^{2}+b^{2}=c^{2},} where c {\displaystyle c} is the length of the hypotenuse (side opposite the right angle), and a {\displaystyle a} and b {\displaystyle b} are the lengths of the legs ...
For example, when α is the ground plane and β is the horizon plane, then the vanishing line of α is the horizon line β ∩ π. To put it simply, the vanishing line of some plane, say α , is obtained by the intersection of the image plane with another plane, say β , parallel to the plane of interest ( α ), passing through the camera center.
rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°: 4 axes, 2 per axis, together 8 ((1 2 3), etc.; 1 ± i ± j ± k / 2 ) rotation by an angle of 180° such that an edge maps to the opposite edge: 3 ((1 2)(3 4), etc.; i, j, k) reflections in a plane perpendicular to an edge: 6
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.