Search results
Results From The WOW.Com Content Network
An example of a quasi-static process that is not idealizable as reversible is slow heat transfer between two bodies on two finitely different temperatures, where the heat transfer rate is controlled by a poorly conductive partition between the two bodies. In this case, no matter how slowly the process takes place, the state of the composite ...
Reversible adiabatic process: The state on the left can be reached from the state on the right as well as vice versa without exchanging heat with the environment. In some cases, it may be important to distinguish between reversible and quasistatic processes. Reversible processes are always quasistatic, but the converse is not always true. [2]
A quasistatic process is an idealized or fictive model of a thermodynamic "process" considered in theoretical studies. It does not occur in physical reality. It does not occur in physical reality. It may be imagined as happening infinitely slowly so that the system passes through a continuum of states that are infinitesimally close to equilibrium .
where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process Δ S = Q r e v T {\displaystyle \Delta S={Q_{rev} \over T}} . In general, for any cyclic process the state points can be connected by reversible paths, so that
The equal sign refers to a reversible process, which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings. [10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0 ...
In some books one demands that a quasistatic route has to be reversible, here we don't add this extra condition. The net entropy change from the initial state to the final state is independent of the particular choice of the quasistatic route, as the entropy is a function of state. Here is how we can effect the quasistatic route.
An isochoric process is exemplified by the heating or the cooling of the contents of a sealed, inelastic container: The thermodynamic process is the addition or removal of heat; the isolation of the contents of the container establishes the closed system; and the inability of the container to deform imposes the constant-volume condition.
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. When the system is in local equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and ...