When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.

  3. Divisor summatory function - Wikipedia

    en.wikipedia.org/wiki/Divisor_summatory_function

    In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .

  4. Divisor sum identities - Wikipedia

    en.wikipedia.org/wiki/Divisor_sum_identities

    The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:

  5. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), ... is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n).

  6. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  7. Average order of an arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Average_order_of_an...

    An average order of σ(n), the sum of divisors of n, is nπ 2 / 6; An average order of φ(n), Euler's totient function of n, is 6n / π 2; An average order of r(n), the number of ways of expressing n as a sum of two squares, is π; The average order of representations of a natural number as a sum of three squares is 4πn / 3;

  8. Colossally abundant number - Wikipedia

    en.wikipedia.org/wiki/Colossally_abundant_number

    Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...

  9. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    The aliquot sum function can be used to characterize several notable classes of numbers: 1 is the only number whose aliquot sum is 0. A number is prime if and only if its aliquot sum is 1. [1] The aliquot sums of perfect, deficient, and abundant numbers are equal to, less than, and greater than the number itself respectively. [1]