Ads
related to: significant digit rules for multiplication
Search results
Results From The WOW.Com Content Network
The leftmost or largest digit position among the last significant figures of these terms is the ones place, so the calculated result should also have its last significant figure in the ones place. The rule to calculate significant figures for multiplication and division are not the same as the rule for addition and subtraction.
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9.
Numerical prefixes for multiplication of compound or complex (as in complicated) features are created by adding kis to the basic numerical prefix, with the exception of numbers 2 and 3, which are bis- and tris-, respectively.
The same is done for each digit of the multiplicand and the result in each case is shifted one position to the left. As a final step, all the individual products are added to arrive at the total product of the two multi-digit numbers. [69] Other techniques used for multiplication are the grid method and the lattice method. [70]
It can be required that the most significant digit of the significand of a non-zero number be non-zero (except when the corresponding exponent would be smaller than the minimum one). This process is called normalization. For binary formats (which uses only the digits 0 and 1), this non-zero digit is necessarily 1. Therefore, it does not need to ...
So add five times the last digit to the number formed by the remaining digits, and continue to do this until a number is obtained for which it is known whether it is divisible by 7. [9] Another method is multiplication by 3. A number of the form 10x + y has the same remainder when divided by 7 as 3x + y. One must multiply the leftmost digit of ...