Ads
related to: electropermanent magnet
Search results
Results From The WOW.Com Content Network
An electropermanent magnet or EPM is a type of permanent magnet in which the external magnetic field can be switched on or off by a pulse of electric current in a wire winding around part of the magnet. The magnet consists of two sections, one of "hard" (high coercivity) magnetic material and one of "soft" (low coercivity) material. The ...
This page was last edited on 11 December 2022, at 14:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side by side. [2] The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2]
An electropermanent magnet is a type of magnet which consists of both an electromagnet and a dual material permanent magnet, in which the magnetic field produced by the electromagnet is used to change the magnetization of the permanent magnet. The permanent magnet consists of magnetically hard and soft materials, of which only the soft material ...
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
An electropermanent magnets (EPM) is an Altius Space Machines patented technology, which offer numerous benefits over existing mechanical or magnetic interfaces. EPMs are solid-state switchable magnets, with no moving parts and can be put into an unlimited number of form factors. Patent number: 10984936
This page was last edited on 25 November 2022, at 00:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles. There are two simplified models for the nature of these dipoles: the magnetic pole model and the Amperian loop model .