When.com Web Search

  1. Ads

    related to: how to model multiplying fractions

Search results

  1. Results From The WOW.Com Content Network
  2. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.

  3. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    The lattice technique can also be used to multiply decimal fractions. For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section.

  4. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator. This step is called clearing fractions.

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  6. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 / 2 ⁠, − ⁠ 8 / 5 ⁠, ⁠ −8 / 5 ⁠, and ⁠ 8 / −5 ⁠

  7. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Generalization to fractions is by multiplying the numerators and denominators, respectively: = (). This gives the area of a rectangle A B {\displaystyle {\frac {A}{B}}} high and C D {\displaystyle {\frac {C}{D}}} wide, and is the same as the number of things in an array when the rational numbers happen to be whole numbers.