Ad
related to: schrodinger hydrogen atom energy levels quantum mechanics worksheet
Search results
Results From The WOW.Com Content Network
Given that the hydrogen atom contains a nucleus and an electron, quantum mechanics allows one to predict the probability of finding the electron at any given radial distance . It is given by the square of a mathematical function known as the "wavefunction", which is a solution of the Schrödinger equation. The lowest energy equilibrium state of ...
The Schrödinger equation for the electron in a hydrogen atom (or a hydrogen-like atom) is = where is the electron charge, is the position of the electron relative to the nucleus, = | | is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space and = + is the 2-body ...
This equation is obtained from combining the Rydberg formula for any hydrogen-like element (shown below) with E = hν = hc / λ assuming that the principal quantum number n above = n 1 in the Rydberg formula and n 2 = ∞ (principal quantum number of the energy level the electron descends from, when emitting a photon).
For example, according to simple (nonrelativistic) quantum mechanics, the hydrogen atom has many stationary states: 1s, 2s, 2p, and so on, are all stationary states. But in reality, only the ground state 1s is truly "stationary": An electron in a higher energy level will spontaneously emit one or more photons to decay into the ground state. [3]
The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
Hydrogen atomic orbitals of different energy levels. The more opaque areas are where one is most likely to find an electron at any given time. In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space.
The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.