When.com Web Search

  1. Ad

    related to: formulas for equilateral triangle area formula for derivative

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠, ⁠ ⁠, ⁠ ⁠. ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, = (+ +), the area ⁠ ⁠ is [1]

  4. Equilateral triangle - Wikipedia

    en.wikipedia.org/wiki/Equilateral_triangle

    In general, the area of a triangle is half the product of its base and height. The formula of the area of an equilateral triangle can be obtained by substituting the altitude formula. [7] Another way to prove the area of an equilateral triangle is by using the trigonometric function. The area of a triangle is formulated as the half product of ...

  5. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]

  8. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1,y 1), (x 2,y 2), and (x 3,y 3). The shoelace formula can also be used to find the areas of other polygons when their vertices are known.

  9. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.